A Magyar Tudományos Akadémia folyóirata. Alapítva: 1840
 

KEZDŐLAP    ARCHÍVUM    IMPRESSZUM    KERESÉS


 MEGÚJULÓ ENERGIAFORRÁSOK KOMPLEX INTEGRÁCIÓJA 

    KISFESZÜLTSÉGŰ NEMLINEÁRIS HÁLÓZATOKBAN

X

Görbe Péter

tanszéki mérnök, Pannon Egyetem Villamosmérnöki és Információs Rendszerek Tanszék

gorbe.peter(kukac)virt.uni-pannon.hu

Magyar Attila

egyetemi docens, Pannon Egyetem • magyar.attila@virt.uni-pannon.hu

Hangos Katalin

egyetemi tanár, Pannon Egyetem • hangos.katalin(kukac)virt.uni-pannon.hu

 

A fukushimai nukleáris baleset óta az EU radikálisan megváltoztatta eddigi energiapolitikáját, ennek következtében sok atomerőműnek felfüggesztették a működését, és sok erőmű fejezi be működését a következő években. Ezek a változások radikálisan átrendezik az energiatermelési struktúrát a közeljövőben: a nukleáris energiatermelés jelentős csökkentése vagy leállítása miatt kieső termeléskapacitást minél nagyobb részben megújuló energiaforrásokból kívánják fedezni, elsődlegesen szél- és napenergia-hasznosítás – szélgenerátorok, illetve napelemek révén. A cél eléréséhez viszont nem elegendő nagykapacitású központosított erőművek létesítése, ezért jelentős szerep jut a jövőben nagy számban megjelenő háztartási (1–5 KW teljesítményű) kiserőműveknek is. A megújuló energiaforrások előre nehezen tervezhető jellege nagymértékben megnehezíti az így megtermelt villamos teljesítmény integrálását a jelenlegi villamos teherelosztó rendszerbe, ha a megújuló forrásból termelt energia eléri vagy meghaladja a teljes termelés 10%-át (Battaglini et al., 2009). A háztartási kiserőművek integrálása egy európai szintű intelligens hálózatba (smart grid) azonban ígéretes lehetőségnek tűnik (Purvins et al., 2011).

Másrészről a jelentősen emelkedő olajárak és a klímaváltozás lassítása érdekében kitűzött CO2-kibocsátáscsökkentés jelentősen érinti a közlekedési infrastruktúrát is. A lehetséges járműhajtási alternatívák között egyre gyakrabban merül fel a teljesen elektromos hajtású járművek (EV) elterjedése, aminek elsődleges akadálya a lítium-ion (Li) akkumulátorok jelentős tömege és ára, valamint még nem teljesen megoldott a lemerült akkumulátorok gyorstöltése. További probléma a szélsőséges időjárási viszonyoknak (-30C°– +80C°) kitett akkumulátorok pillanatnyi kapacitásának és az adott hőmérsékleten még hasznosítható tárolt töltésének meghatározása. Az elektromos járművek elterjedésével szükség lesz hőmérsékletfüggő gyorstöltési módszerekre, melyek hőmérsékletfüggő akkumulátormodelleket igényelnének, mivel a töltési, kisütési és kapacitást megadó paraméterek erősen függnek a cellák hőmérsékletétől (Bandhauer et al., 2011; Göllei et al., 2012; Johnson et al., 2000), ezért korrekt jellemzésükhöz a hőmérsékletet is figyelembe kell venni.

A fotovoltaikus panelek és szélgenerátorok optimális munkapontban történő üzemeltetését a költséghatékonyság és a csökkenő megtérülési idő, míg a költséges Li-akkumulátorok optimális működtetését az élettartamuk meghosszabbításának igénye teszi szükségessé. Szerencsére a két szabályozási feladat (a megújuló energiát villamos energiává alakító kiserőművek optimális üzemeltetése, és a Li-akkumulátorok optimális töltő/kisütő áramának pontos szabályozása) együttesen is kezelhető (Görbe et al., 2012).

A háztartási kiserőmű által megtermelt, de el nem fogyasztott villamos energia a transzformátorkörzet egyéb fogyasztói által felhasználásra kerül, illetve ha erre nincs igény, a transzformátoron keresztül bekerülhet a középfeszültségű, esetlegesen a nagyfeszültségű villamos hálózatba is. A kiserőművek csatlakoztatására felépített szinkronüzemű inverterek alkalmasak lehetnek a kisfeszültségű hálózat kondicionálására, azaz üzemi paramétereinek (veszteség, teljesítménytényező, teljes harmonikus torzítás) javítására is. Fontos, hogy ez a kondicionálás az egyszerű hálózati betápláláshoz képest nem igényel költséges elemeket, csupán csak az inverter szabályozási struktúrájának szoftveres átalakítását.


1. Háttér és motiváció


A megújuló energiaforrások hatékony felhasználásának kritikus feltétele az időben változó források maximális hatásfokú kihasználása mind technológiai, mind pedig gazdasági értelemben (Battaglini et al., 2009). Ehhez olyan intelligens energetikai rendszerek (smart grid) (Blumsack – Fernandez, 2012) szükségesek, amelyek befolyásolni tudják a pillanatnyi termelést, a pillanatnyi energiafelhasználást, valamint az energiatárolást is. A problémát elsősorban a jelentős kapacitású és gyorsan szabályozható energiatároló egységek jelentik, egyrészt a jelentős beruházási költség miatt, másrészt komplex jogi és környezetvédelmi problémákkal járnak (például a szivattyús-tárolós vízierőművek esetében), harmadrészt pedig sok esetben a földrajzi adottságok sem teszik lehetővé létesítésüket. Az elektromos járművek elterjedésével alternatív megoldásként jöhet szóba jelentős számú elektromos jármű csatlakoztatása a helyi hálózathoz, így tekintélyes és ugyanakkor gyorsan felhasználható tárolókapacitás lenne felhasználható (Purvins et al., 2011).

A jelenlegi kisfeszültségű hálózatok okos hálózat, vagyis smart grid alapú megközelítésének egy másik jelentős feladata a villamos energia minőségének folyamatos felügyelete és szabályozása. A háztartásokban használt mobiltelefon-töltők, notebook-tápegységek, kis teljesítményű motorvezérlők, híradástechnikai berendezések és számítástechnikai hálózati berendezések száma folyamatosan növekszik, ezzel együtt a bennük alkalmazott kisfogyasztású, egyszerű kapcsoló üzemű tápegységek száma is, ami káros hatással van a villamos energia minőségére. Ezek az egyszerű kapacitív bemeneti fokozatok jelentős magasabb rendű harmonikus komponenst hoznak létre a hálózaton, ami az eredendően szinuszos feszültség jelalaktorzulásához vezet. A felharmonikus komponensek közül a 3. és az 5. felharmonikusok rendelkeznek jelentősebb amplitúdóval. Ezek a torzító felharmonikus komponensek nem kompenzálhatók egyszerű sönt kapacitásokkal (kompenzátorokkal), és több nemkívánatos hatást is okoznak a kisfeszültségű hálózat működésében, melyek a hálózati veszteség növekedéséhez, és bizonyos amplitúdóarány felett a hálózat hibás működéséhez is vezethetnek.

A feszültség torzulásának mérőszáma a teljes harmonikus torzítás (THD), ami a következőképpen definiálható:




ahol U1 a feszültség alapharmonikus komponensének effektív értéke, és Un a feszültség n-edik magasabb rendű harmonikus komponensének effektív értéke. Az esetünkben vizsgált kapacitív bemeneti fokozatú alkalmazásokban THD > 0 a jellemző. Ez a torzítás már jelenleg is kimutathatóan jelen van a kisfeszültségű hálózatokban, és a kisfogyasztású kapcsoló üzemű háztartási tápegységek számának emelkedésével (kompakt fénycsövek, LED-világítás stb.) folyamatosan növekszik. A nemlineáris torzított (nem szinuszos) feszültség és áram időfüggvényekkel rendelkező kisfeszültségű hálózatokban korábban is alkalmaztak aktív teljesítményszűrőket a hálózatban jelen levő áram felharmonikusok csökkentésére (Limongi et al., 2009).


2. Teljes szabályozási struktúra


A korábban felvázolt egységes szabályozási cél megvalósítása egy összetett szabályozási struktúrával érhető el, ami egyszerre alkalmas a kisfeszültségű nemlineáris hálózatban tapasztalt feszültségtorzítás csökkentésére a beinjektált felharmonikus áramkomponensek meghatározásával, a hálózatba beinjektált áram szabályozására, az akkumulátor töltő és kisütő áramának szabályozására, a közbenső köri pufferkapacitás feszültségének tartására és a hálózatbarát működési mód keretében a csatlakozási pont feszültsége effektív értékének szabályozására (1. ábra).

2.1 Maximálisteljesítmény-szabályozó • Célja az adott időpillanatban rendelkezésre álló megújuló energia költséghatékony kinyerése a beruházás megtérülési idejének csökkentése érdekében.

2.2 Felharmonikus szabályozó • A komplex szabályozási struktúra legfontosabb eleme. Az irodalomban fellelhető megoldásokkal ellentétben a torzított áram időfüggvénymérése nem alkalmazható, mivel a háztartási kiserőmű jellemző módon a fogyasztásmérési pont után csatlakozik a kisfeszültségű hálózatra. Így a kompenzálni kívánt áram mérése csak külső árammérő eszköz csatlakoztatásával lenne megoldható, ami jelentősen megnövelné a telepítési költségeket. Másrészt a kompenzálási pont kívül esik az adott háztartáson, hiszen a felharmonikus szabályozó nemcsak az adott háztartás által hozzáadott nemlineáris torzítást, hanem a kisfeszültségű transzformátorkörzet adott fázisvezetőjén lévő egyéb torzító nemlineáris háztartási és ipari fogyasztók által létrehozott felharmonikus áramkomponenseket is kompenzálja. A szabályozó a csatlakozási ponton mérhető feszültséget vizsgálja a frekvenciatartományban, és a felharmonikus komponensek amplitúdójából képez egy – a torzítást jellemző – kvadratikus hibafüggvényt, ami szigorúan monoton összefüggésben van a harmonikus torzítással. A felharmonikus szabályozó működése során adaptív (változó lépésközű) gradiens módszert használ.

2.3Töltésvezérlő • Feladata a Li-akkumulátor adott értékű töltő/kisütő áramának szabályozása.

2.4 Közbensőköri feszültségszabályozó • A közbensőköri feszültségszabályozó felügyeli az inverter belső pufferkapacitásának feszültségét, és azt az előre beállított referenciaértéken (600 V) tartja.

2.5 Effektív feszültségszabályozó • Az áramminőség javításának érdekében a jelen rendszer smart grid és külső villamos irányító rendszer hiányában is lehetőséget ad a hálózat termelés/fogyasztás egyensúlyának fenntartására időben változó források és fogyasztók esetében is. Mivel a hálózat egészének fogyasztási/termelési viszonyairól így nincs információ, az áramminőség javításánál a kisfeszültségű transzformátorkörzet fogyasztási egyensúlyával foglalkozik. A transzformátor alul-, illetve túlterheléséről a beépítési pontban a feszültség effektív értékének mérésével tájékozódik. Alapjele a hálózati feszültség effektív értékének szabványos értéke (230 V).


3. Modellezés és szimuláció


A nemlineáris torzított hálózat modellje Matlab Simulink környezetben került implementálásra az 1. ábra irányítástechnikai struktúrájának megfelelően.

3.1 Nemlineáris hálózat modellje • A nemlineáris hálózat modellje tartalmazza a transzformátor és a továbbító villamos vezetékek modellje mellett a

 

 

különböző terhelések elemeit: tisztán ohmos terhelés, ami a hagyományos izzókat és fűtőszálakat, és az aktív teljesítménytényező-javítással ellátott berendezéseket, induktív ohmos terhelés, ami a kisteljesítményű egyfázisú motorokkal ellátott terheléseket (mosógép, fűnyíró, porszívó stb.), kapacitív nemlineáris ohmos terhelés, ami az egyszerű nemlineáris kapcsolóüzemű terheléseket reprezentálja.

3.2 Villamosjármű-akkumulátor hőmérséklet-függő modellje • Alapvető cél az akkumulátor modellezése a hőmérsékletfüggés figyelembe vételével (Göllei et al., 2012). A hőmérsékletfüggés különösen fontos az elektromos autókban alkalmazott akkumulátoroknál, mivel széles hőmérsékleti tartományban üzemeltetik őket.

Az akkumulátorfeszültség, a töltöttségi állapot és a környezeti hőmérséklet közötti összefüggés egy polinomiális függvénnyel közelíthető. Mivel a polinomiális összefüggés mögött nincs fizikai jelentés, a modell adott fokszámú becslés segítségével alkalmazható bármilyen más elektromos (lineáris és nemlineáris) energiatárolóra is. A kapocsfeszültség 95%-os konfidenciaszint melletti polinomiális közelítését a 2. ábra mutatja. Az akkumulátor hőmérsékletváltozása és a töltés, illetve a környezeti hőmérséklet közti összefüggés egy negyedfokú polinomiális függvénnyel közelíthető. A közelítésnek természetesen a fizikailag értelmes környezeti hőmérséklet-, illetve töltéstartományon van értelme. A modell validálása a mérési körülményekkel teljesen egyező szimulációs példakörnyezetben történt.

3.3 Szimulációs eredmények • Első lépésben a modell ellenőrzésére került sor, a maximálisteljesítmény-szabályozó és a közbensőköri feszültségszabályozó működésének tesztelése céljából. A kapott eredmények a későbbi szimulációk összehasonlításakor referenciaként kerültek felhasználásra.

Következő lépés az inverternek az előzőleg szimulált hálózathoz való csatlakoztatása. Az akkumulátortöltő alapjelét nullára állítva, a felharmonikus szabályozót kikapcsolva a rendszer gyakorlatilag egy egyszerű hálózati szinkronüzemű háztartási kiserőműként működik. A feszültség esetén jelentős eltérés a referenciához képest nem nagyon tapasztalható, az inverter szintén kapcsoló üzemű működtetése a jelalak kismértékű zajosodását eredményezte. Az áram természetesen jelentősen változott, mivel az inverter áramot táplál vissza a hálózatba.

A bekapcsolt felharmonikus szabályozóval futtatott szimuláció végeredményeképpen a torzult jelalakok sokkal inkább szinuszos jellegűek, mint a felharmonikus szabályozó nélküli szimulációk esetén (Görbe et al., 2012).

A szimuláció során a felharmonikus szabályozó működése az idő- és a frekvenciatartományban is nyomon követhető, ahogy az adaptívgradiens-szabályozó az időszeletekben adott sorrendben változatta a komponensek amplitúdó- és fázisértékeit (3., 5., 7., 9. és 11. felharmonikus), valamint ez komoly hatással volt a hibafüggvényre és a csatlakozási ponton mért THD-ra (3. ábra). Az eredményeket az 1. táblázat összesíti. A felharmonikus szabályozó működtetésével a teljes harmonikus torzítás 14,7%-ról 5,04%-ra csökkent, míg az alkalmazott hibafüggvény értéke 47,03 V2-ről 3,87 V2-re csökkent. Az akkumulátortöltés/kisütés bekapcsolása e szimulációs eredményekre nem volt hatással.


4. Diszkusszió


A bemutatott eredmények alapján az elkészített multifunkcionális szabályozó alkalmas az energia optimális irányítására a megújuló energiaforrás, az elektromos hajtású jármű akkumulátor és a kisfeszültségű teherelosztó hálózat között. Alkalmazásával a villamosenergia-igény lokálisan szabályozott formában előállítható, illetve a rendszer alkalmas a villamos energia minőségének javítására is. Ezen funkciók segítségével villamosenergia-megtakarítást, és ha a villamos energia egy részét vagy egészét fosszilis energiából állítjuk elő, CO2-kibocsátáscsökkenést is elérhetünk. Az elosztott energiatermelésből adódó veszteségcsökkenés az elosztó rendszerben lévő transzformátor veszteségének megtakarítását, valamint a nagyfeszültségű és középfeszültségű távvezetékek veszteségi teljesítményének megtakarítását jelenti, mivel az energiaszükségletet lokálisan a kisfeszültségű transzformátorkörzeten belül állítjuk elő a helyi fogyasztók számára. Magyarországon a transzformátorok és a teherelosztó vezetékrendszer vesztesége 2008-ban az MVM statisztikai adatszolgáltatása alapján 9,72%-ra tehető, ami azt jelenti, hogy a teljesen elosztott termeléssel elérhető maximális veszteségcsökkenés 9,72%. Konzervatív becsléssel 5%-os megtakarítást vettünk figyelembe. A kialakított szabályozó jelentősen csökkenti a hálózati feszültség teljes harmonikus torzítását, ami a fogyasztók összegzett áramának teljes harmonikus torzítására is hatással van. Feltételezhető, hogy a fogyasztók együttes hatása a szabályozó felharmonikus áram betáplálásával összegezve közel ideális, tisztán valós impedanciájú ohmos fogyasztóvá összegződik, így a feszültség és az áram teljes harmonikus torzítása jó közelítéssel megegyezik (Görbe et al., 2012).

A módszer alkalmazásával létrejövő teljes harmonikustorzítás-csökkenés miatt a fázisvezető veszteségi teljesítménye 1,75%-kal, a nullvezető veszteségi teljesítménye 5,75%-kal (Görbe et al., 2012) csökkent az ideális szinuszos eset veszteségi teljesítményéhez képest. Az átlagos vezetékveszteségi teljesítményt 4%-kal figyelembe véve az átlagos háztartás veszteségi teljesítményének csökkenése mintegy 0,3% a teljes villamos energiafogyasztást tekintve. Az eredmény eléréséhez nem szükséges külön beruházás, elegendő a meglévő komplex inverter szabályozó szoftverének módosítása, azaz a felharmonikus szabályozó implementálása. Egy átlagos háztartás éves fogyasztását 3000 KWh-val számolva 9 KWh veszteségcsökkenés érhető el a THD-csökkentés, és mintegy 150 kWh veszteségcsökkenés érhető el az elosztott termelés következményeként. Figyelembe véve a fosszilis energiaforrások felhasználási arányát a magyarországi viszonyok között (szén 17,3%, gáz 38,3%), illetve a használatukkal járó CO2-kibocsátást (1000 g/kWh szén, 430 g/kWh gáz esetén), akkor egy átlagos háztartás esetén a nemlineáris torzítás csökkentésével 4376 g/év, az elosztott termelés eredményeképpen pedig 73 000 g/év CO2-kibocsátáscsökkenés érhető el.


Konklúzió


A kutatás során készült egy hőmérsékletfüggő akkumulátormodell, amelynek paraméterei mért adatok alapján kerültek meghatározásra. A modell kialakításához alkalmazott mérési és szimulációs környezet általános, bármilyen más villamos energiaforrás hőmérsékletfüggő modelljének felépítésére alkalmazható. A modell validálása egy komplex energetikai rendszer modelljébe illesztve, szimuláció segítségével történt. A kapott paraméterek illeszkednek az irodalomban található fizikai és kémiai alapú modellek eredményeihez.

További jelentős eredményként egy – a megújuló energiaforrást felhasználó háztartási kiserőmű és EV-akkumulátortöltő integrációjával felépülő – rendszermodell is elkészült. A nagy központi erőművek alkalmazása helyett elosztott háztartási kiserőművek alkalmazásával csökkenthetőek a villamos energiarendszer szállítási veszteségei. A szabályozó alkalmas a megújuló energiaforrásból kinyerhető maximális teljesítmény kinyerésére, a hálózat teljesítményegyensúlyának fenntartására időben változó megújuló energiaforrások esetén, az EV-akkumulátorok feltöltésére tiszta megújuló energiával, aktív teljesítménytényező kompenzálására és a harmonikus torzítás kompenzálására. A komplex szabályozó szimulációs vizsgálata alapján jelentős javulás érhető el a kisfeszültségű transzformátorkörzet feszültség- és áramjelalakjaiban, ami a THD jelentős csökkentésének volt köszönhető. Emellett az energiaáramlás irányának szabályozásával a szabályozó képes fenntartani a kisfeszültségű hálózat egyensúlyát és a feszültségszint stabilitását. A jelen kutatás során elért teljes harmonikustorzítás-csökkentés megközelíti az irodalomban található értékeket, annak ellenére, hogy a mérési pontban áram-idő függvény a szabályozó működtetésénél nem került felhasználásra, mivel ebben az esetben erre nincs is technikai lehetőség. A szabályozó a feszültségjelalak torzításának csökkentését minimalizálja, amivel nemcsak az adott háztartás, hanem a teljes transzformátorkörzet áramminőségét javítja, és ezzel a villamos veszteségi teljesítményt és áttételesen a CO2-kibocsátást is csökkenti. Az energiamegtakarítás és az emissziócsökkentés számításánál a magyar villamosenergia-hálózat statisztikai adatai kerültek felhasználásra. Az elosztott energiatermelésből származó becsült energiamegtakarítás egy átlagos magyar háztartás esetén elérheti az 5%-ot, ami 73 000 g/év CO2-kibocsátáscsökkenésnek felel meg. A THD-kompenzációból származó becsült energiamegtakarítás 0,3%, míg a CO2-kibocsátáscsökkenés 476 g/év.
 



Kulcsszavak: megújuló energiaforrások, hálózati integráció, villamos hálózat, teljes harmonikus torzítás, optimális szabályozás, elektromos jármű, akkumulátor, modellezés, energiatárolás
 


 

IRODALOM

Bandhauer, T. M. – Garimella, S. – Fuller, T. F. (2011): A Critical Review of Thermal Issues in Li-Ion. Journal of Electrochemical Society. 158, 3, R1–R25.

Battaglini, A. – Lilliestam, J. – Haas, A. – Patt, A. (2009): Development of SuperSmart Grids for a More Efficient Utilisation of Electricity from Renewable Sources. Journal of Cleaner Production. 17, 911–918.

Blumsack, S. – Fernandez, A. (2012): Ready or Not, Here Comes the Smart Grid! Energy. 37, 61–68.

Göllei A. – Görbe P. – Magyar A. (2012): Modeling and Optimization of Electrical Vehicle Batteries in Complex Clean Energy Systems. Journal of Cleaner Production. in print

Görbe P. – Magyar A. – Hangos K. M. (2012): Reduction of Power Losses with Smart Grids Fuelled with Renewable Sources and Applying EV Batteries. Journal of Cleaner Production. in print.

Johnson, V. – Pesaran, A. – Sack, T. (2000): Temperature-Dependent Battery Models for High-Power Li-lon Batteries. NREL, Montreal, Canada

Limongi, L. – Bojoi, R. – Griva, G. – Tenconi, A. (2009): Comparing the Performance of Digital Signal. IEEE Industrial Electronics Magazine, 3,1, 20–31.

Purvins, A. et al. (2011): A European Supergrid for Renewable Energy: Local Impacts and Far-reaching Challenges. Journal of Cleaner Production. 19, 1909–1916.

 


 

 

1. ábra • A teljes szabályozási struktúra <

 


 


2. ábra • Akkumulátor kapocsfeszültsége a töltöttségi szint

és a környezeti hőmérséklet függvényében <

 


 


3. ábra • A teljes harmonikus torzítás (THD) értéke a szabályozóalgoritmus működése közben <

 


 

üzemmód IRMS hiba THD

inverter ki

n. a. 39,63 V2 14,26%

felharmonikus szabályozó ki

11,58 A 47,03 V2 14,75%

felharmonikus szabályozó be

5,65 A 3,87 V2 5,04%


1. táblázat • Futtatási eredmények – felharmonikus szabályozó hatása <